A general method for controlling and resolving rotational orientation of molecules in molecule-surface collisions

نویسندگان

  • Oded Godsi
  • Gefen Corem
  • Yosef Alkoby
  • Joshua T. Cantin
  • Roman V. Krems
  • Mark F. Somers
  • Jörg Meyer
  • Geert-Jan Kroes
  • Tsofar Maniv
  • Gil Alexandrowicz
چکیده

The outcome of molecule-surface collisions can be modified by pre-aligning the molecule; however, experiments accomplishing this are rare because of the difficulty of preparing molecules in aligned quantum states. Here we present a general solution to this problem based on magnetic manipulation of the rotational magnetic moment of the incident molecule. We apply the technique to the scattering of H2 from flat and stepped copper surfaces. We demonstrate control of the molecule's initial quantum state, allowing a direct comparison of differences in the stereodynamic scattering from the two surfaces. Our results show that a stepped surface exhibits a much larger dependence of the corrugation of the interaction on the alignment of the molecule than the low-index surface. We also demonstrate an extension of the technique that transforms the set-up into an interferometer, which is sensitive to molecular quantum states both before and after the scattering event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Final rotational state distributions from NO(vi = 11) in collisions with Au(111): the magnitude of vibrational energy transfer depends on orientation in molecule-surface collisions.

When NO molecules collide at a Au(111) surface, their interaction is controlled by several factors; especially important are the molecules' orientation with respect to the surface (N-first vs. O-first) and their distance of closest approach. In fact, the former may control the latter as N-first orientations are attractive and O-first orientations are repulsive. In this work, we employ electric ...

متن کامل

CO Adsorption on the V (100) Surface: A Density Functional Study

Adsorption of CO molecule on the Vanadium surface has been studied by using of the DFT method with LANL2DZ,6-31G* and 6-31G** basis sets by GGA approximation of theory. Using periodic first principles simulations we investigate the interaction of oxygen molecule with regular V (100) surface. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverag...

متن کامل

Comparative stereodynamics in molecule-atom and molecule-molecule rotational energy transfer: NO(A(2)Σ(+)) + He and D2.

We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A(2)Σ(+)) in collisions with the kinematically identical colliders He and D2. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N' =...

متن کامل

Particle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges

In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...

متن کامل

Study of lone pair description in molecules by the modified delocalized floating spherical Gaussian orbital method.

This research has been carried out to study and find a rather general description for a lone pairorbital in molecules. Since the orbital parameters must be manageable in advance, and correctgeometry of the molecule (bond lengths) is depend on the appropriate lone pair description; theFSGO method including optimization has been used to obtain orbital parameters and energy. Theproposed models for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017